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When Solvers Are Powerful but Modeling Is Manual

Solvers can handle optimization problems with millions of variables in
seconds.

Translating real-world problems into decision-making models still
requires manual effort from domain experts.
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LLM Performance on Auto-Formulation

LLMs perform well on deterministic optimization problems (e.g., LP, MILP,
NLP), but struggle with textbook-level DP exercises.

Type Model NL4OPT MAMO-E MAMO-C OptMATH Micro

Baseline
GPT-4 89.0 87.3 49.3 16.6 70.9
DeepSeek-V3 95.9 88.3 51.1 32.6 75.3

Agent-based OptiMUS 78.8 - - - -

Fine-tuned
ORLM-Llama3-8B 85.7 82.3 37.4 - -
OptMATH-Qwen2.5-7B 94.7 86.5 51.2 24.4 73.5

Source: Lu et al. (2025)

Type Model Param Easy Hard Micro

Baseline
o1 ∗300B 57.8 31.0 50.0
GPT-4o ∗200B 45.6 19.0 37.1
DeepSeek-V3 671B 51.1 26.2 43.2

Fine-tuned
ORLM-Llama3-8B (pass@1) 8B 1.1 0.0 0.8
ORLM-Llama3-8B (pass@10) 8B 11.1 2.4 8.3
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Formulating a Dynamic Programming Problem

Determine the action to take at each state st in period t to maximize
the expected reward at the end of the horizon:

(Finite) vt(st) = sup
a∈Ast ,t

rt(st , a) + ∑
j∈St+1

pt(j |st , a)vt+1(j)

 , ∀st , t

Infinite-horizon settings: discounted and average reward.
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Why is DP Challenging to Auto-Formulate?

An Inventory Example

A warehouse has an end-of-period capacity of 3 units. During a
production period, a $4 setup cost is incurred, and a holding cost of $1 per
unit applies to the period’s ending inventory. Variable production costs are
$1 per unit. Demand each period is equally likely to be either 1 or 2 units,
and all demand must be fulfilled immediately. The discount factor is
β = 0.8. The objective is to minimize the expected discounted costs over
an infinite horizon, starting with zero initial inventory.

A toy inventory problem with a capacity constraint.
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All Advanced Commercial LLMs Failed
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LLMs Misinterpret Implicit Constraints

An Inventory Example

A warehouse has an end-of-period capacity of 3 units. ... Demand each
period is equally likely to be either 1 or 2 units, and all demand must be
fulfilled immediately. ...

GPT-4o’s Response

...
Capacity: 3 units
...
x ∈ {0, 1, 2, 3}
...
a ∈ {0, . . . , 3− x}
...

Interprets 3 as an absolute capacity.

Production is limited so that
x + a ≤ 3.
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DP vs. LP/MILP/NLP

Order of events matters: when decisions occur, costs incur, and
states evolve.

Complex transitions with uncertainty are common to most DP
problems.

Implicit constraints often buried in narratives rather than explicit
equations.

For LLMs: there is no testing dataset (we provide the first one!)
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Literature Comparison: Auto-Formulation

Reference: ORLM (Huang et al. 2025) vs. Ours

Problem Focus: Mainly LP/MILP vs. DP (more complex)

Data Source:
Private seed data vs. Curated from textbooks
Well-established benchmarks vs. No existing benchmark

Synthetic Data Generation:
Forward only vs. Forward + Backward (for accuracy and diversity)
Zero-shot or static prompting vs. RAG-based few-shot prompting
(improves output quality)

Training Pipeline:
SFT only vs. SFT + RL (for better solution quality and robustness)
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Literature Comparison: Data Synthesis (Backward)

Reference: Lyapunov function discovery (Alfarano et al. 2024)

Forward: Start from a dynamic system → find Lyapunov via SOS
solvers.

Backward: Start from Lyapunov → construct a dynamic system.

In optimization:
Forward generation has no guarantee of correctness.
Recent works rely on backward only: Yang et al. (2024b), Lu et al. (2025)

We show both forward and backward generation are necessary:

Forward: diversity
Backward: correctness
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DP-Bench: The First DP Benchmark

132 DP problems: 90 Easy + 42 Hard, all with numeric ground-truth
answers.

All problems were manually curated and enriched from textbooks
(Winston 2004, Puterman 2005).
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DP-Bench: The First DP Benchmark

Cover deterministic & stochastic,
finite & infinite horizon settings.

Hard subset is a real stress-test for
model auto-formulation.
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Data Synthesis Pipeline
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Data Synthesis Pipeline - Forward Generation
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Examples for Forward Generation

Original Problem (PNL)

A repairman who services Q = 4 facilities moves between
location s and location j in any period according to the
stationary transition probability p(j | s) (omitted here). An
equipment trailer which carries spare parts and tools may be
located at any one of M = 3 sites. If the trailer is at site m
and the repairman is at facility j , the cost of obtaining
material from the trailer is c(m, j), where:

c(1, 1) = 2, c(1, 2) = 5, c(1, 3) = 6, c(1, 4) = 8
c(2, 1) = 3, c(2, 2) = 4, c(2, 3) = 7, c(2, 4) = 9
c(3, 1) = 4, c(3, 2) = 6, c(3, 3) = 5, c(3, 4) = 7

The cost of moving the trailer from site m to site j is
d(m, j), where:

d(1, 1) = 0, d(1, 2) = 3, d(1, 3) = 4
d(2, 1) = 2, d(2, 2) = 0, d(2, 3) = 5
d(3, 1) = 3, d(3, 2) = 4, d(3, 3) = 0

The decision maker’s objective is to dynamically relocate
the trailer so as to minimize expected costs. Assume that
the decision maker observes the location of the repairman
and trailer, relocates the trailer, and then the repairman
moves and services a facility. Given the costs above,
determine the minimum expected cost incurred over a
decision-making horizon of 5 periods when trailer and
repairman are both at site 1.

Generated Problem ( ˜PNL)

A thermal power plant operator manages a coal plant and
aims to minimize operational costs while meeting
fluctuating energy demands over a 5-day period. The plant
can be operated at one of three output levels each day: low,
medium, or high, each with associated operational costs and
energy outputs.
The operational cost per day, depending on the output level,
is given by:

Low output: $50 with energy output = 20 units

Medium output: $100 with energy output = 40
units

High output: $150 with energy output = 60 units

Daily energy demand fluctuates with probabilities: 20 units
w.p. 30, 40 units w.p. 50, and 60 units w.p. 20. If the
energy output exceeds the demand, the excess energy incurs
a storage cost of $2 per unit. If the demand exceeds the
output, the plant incurs a penalty cost of $5 per unit of
unmet demand. The objective is to minimize the total
expected operational and penalty costs over the 5-day
period, starting with a high output level on day 1. Using
dynamic programming, determine the minimum expected
cost after 5 days.

Scenario
• Category: Thermal Plant Operational Scheduling
• Characteristics: Focuses on minimizing opera-
tional costs while meeting energy demands
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Data Synthesis Pipeline - Backward Generation
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Examples for Backward Generation

Figure: Perturbed Code C̃

Generated Problem ( ˜PNL)

In India, a thermal plant manager faces the challenge of
scheduling operations for a coal plant over a 6-day period.
The plant operates under variable energy demand and seeks
to minimize operational costs while ensuring demand
fulfillment. The plant manager begins with one plant site
operational on Day 1 and must decide whether to continue
or shift operations to one of four different plant sites each
day. Each site incurs a specific movement cost depending
on the current site, and daily operational costs vary based
on energy demand.The daily energy demand is represented
by 5 discrete states. The transition probability matrix, P,
for energy demand states from Day t to Day t + 1 is given
as follows:

P =


0.2 0.3 0.2 0.2 0.1
0.15 0.2 0.25 0.25 0.15
0.25 0.25 0.2 0.15 0.15
0.3 0.2 0.2 0.1 0.2
0.2 0.2 0.25 0.15 0.2


Operational costs at each plant site based on the energy
demand state are defined by matrix C (omitted here).
Furthermore, transitioning between plant sites incurs
movement costs specified by matrix D (omitted here). The
goal is to determine the minimum expected total
operational cost over the 6-day period starting with energy
demand state 1 and plant site 1. What is the optimal
expected operational cost given this configuration?

Scenario
• Category: Thermal Plant Operational Scheduling
• Characteristics: Focuses on minimizing opera-
tional costs while meeting energy demands
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Reflected CoT: Learning from Correct Solution

Motivation: Hard problems are often discarded due to incorrect
outputs

LLMs struggle to solve DP problems (only 47.22 pass@5)

Reflected CoT enables:
Retaining hard questions with verified correct solutions
Generating traceable reasoning: initial attempt → self-reflection →
revision until correct

Why it works: Backward generation provides the ground-truth
solution for reflection and correction

Results: Recovers 20.3% of problems that would otherwise be
discarded

High-Quality Data for RL Fine-Tuning!
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Training Recipes

Two Stage Training: Supervised Fine-Tuning (SFT) + RL

SFT (cold-start the base):

113K paired trajectories (PNL,CoT,M,C)
(70K forward, 34K backward, 8K reflection)

RL (exploration & debiasing):

DRL 8K verifiable problems
GRPO / DPO

Chenyu Zhou (SJTU) Auto-Formulating DP Problems with LLMs July, 2025 19 / 24



Main Result

DPLM achieves better performance than its teacher model GPT-4o.
DPLM outperforms DeepSeek-R1 on hard problems, despite using
100× fewer parameters.

Chenyu Zhou (SJTU) Auto-Formulating DP Problems with LLMs July, 2025 20 / 24



Ablation Study

SFT is necessary!

Chenyu Zhou (SJTU) Auto-Formulating DP Problems with LLMs July, 2025 21 / 24



Insights: Forward vs. Backward
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Balancing Diversity and Correctness: Scaling Properties of Generation Methods
Forward
Backward
Hybrid
Qwen2.5-7B-Instruct (Baseline)

Pros vs. Cons

Forward Backward

+ Breadth / Diversity + Depth / Correctness

− Noisy labels − Limited diversity

Chenyu Zhou (SJTU) Auto-Formulating DP Problems with LLMs July, 2025 22 / 24



Our Contributions

DP-Bench: 132 textbook-style DP problems, first public benchmark
for DP

Lightweight yet strong model: our DPLM-7B attains high
accuracy while using 100× fewer parameters

Scalable data synthesis pipeline from scratch:
Forward and backward are both needed!

Forward generation for diversity
Backward generation for depth & correctness
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Thanks for Your Attention!

Auto-Formulating Dynamic Programming Problems
with Large Language Models

Chenyu Zhou, Jingyuan Yang, Linwei Xin,
Yitian Chen, Ziyan He, Dongdong Ge

Draft Available Online!
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Literature Comparison: Learning from Answer

Reference: Self-Taught Reasoner (STaR) (Zelikman et al. 2022)

Problem Focus: Short math/commonsense QA with known answers
vs. DP (possibly flawed problem description)

STaR generates rationales from answers

For DP, even given full solutions, generating valid CoT is challenging,
especially when the problem itself may be flawed

Our Approach (Reflected CoT): Compare with ground-truth
solution, identify errors, and retry

Data Improvement:
Boosts the proportion of high-quality problems for training data
Mitigate a common issue in datasets that are mostly accurate but
overly simplistic
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Examples from DP-Bench

Easy
An electronics firm has a contract to deliver the following
number of radios during the next three months; month 1,
200 radios; month 2, 300 radios; month 3, 300 radios. For
each radio produced during months 1 and 2, a $10 variable
cost is incurred; for each radio produced during month 3, a
$12 variable cost is incurred. The inventory cost is $1.50
for each radio in stock at the end of a month. The cost of
setting up for production during a month is $250. Radios
made during a month may be used to meet demand for
that month or any future month. Assume that production
during each month must be a multiple of 100. Given that
the initial inventory level is 0 units, use dynamic
programming to determine the minimum total cost of
three months.

Finite-horizon

Deterministic demand

Hard
Daily demand for paint brushes at a particular store follows the
demand distribution: Demand: 0, 1, 2, 3, 4, Probability:
0.7, 0.15, 0.1, 0.04, 0.01. The stock level is reviewed in the
evening every four days and when warranted an order is placed
at the central warehouse to augment stock. Orders arrive two
days later (a two day lead time) and are available to meet
demand on the morning of the third day following the review.
Demand not satisfed from stock on hand is never filled.
Management imposes a penalty to account for this. Find the
minimizes expected total ordering, holding and shortage costs
under the assumption that the fixed cost for placing an order is
$0.20, the daily per unit holding cost is $0.01 and the per unit
penalty cost for unfilled orders is $0.50. Daily costs are incurred
after the demand for the day is realized. Determine the
minimum long-run average cost, rounded to four decimal places.

Avg. cost over infinite-horizon

Review every 4 days

Positive lead time (2 days)
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Why We Need Both Forward and Backward

Limited seed data (only 91 problems).

Forward (diverse formulation):
Enables diverse problem generation.
Lacks performance guarantees.

Backward (high-quality solution):
Guarantees correctness with self-reflective reasoning.
Variety is constrained by seed coverage.

DP-specific adaptation:

Few-shot by problem type:
Similar problem description, different models or algorithms (e.g.,
inventory problem with finite vs. infinite horizon).
Use type labels to select relevant examples.
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Examples for Reflected CoT
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Training Recipes - SFT

Objective. Maximum-likelihood on teacher traces:

LSFT = −E(x ,y)∼DSFT

[
log πθ(y | x)

]
Data. 113K paired trajectories (PNL,CoT,M,C)

(70K forward, 34K backward, 8K reflection)

Intuition. Teach domain reasoning knowledge & formatting, narrow
RL search space.
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Training Recipes - RL

Data. DRL 8K verifiable problems.

GRPO (online, higher performance potential):

max
θ

Ex,yi

[
min

(
ρiAi , clip(ρi , 1±ε)Ai

)]
− β DKL

(
πθ ∥ πref

)
,

Ai =
ri − r

σr
, ρi =

πθ(yi |x)
πold(yi |x)

DPO (offline, more stable and computationally cheaper): minimize
preference loss:

LDPO = −E
[
log σ

(
β(log πθ(yw )− log πθ(yl))

)]
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Inference Scaling Analysis

Hard problem errors arise from reasoning

Easy problem errors arise from missing domain knowledge
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Model Size Scaling Analysis

Below 7B, model size is the bottleneck; above 7B, data is.
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